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Course requirements

Computational Complexity: A Modern Approach by Arora
& Barak (http://www.cs.princeton.edu/theory/complexity/) Computational

lectures (hoorcollege) Complexity
— Monday 17:00-19:00, Wednesday 15:00-17:00 -

/'y

— Question: Exchange werkcolllege and hoorcollege on
Wednesday?

Sanjeev Arora

werkcollege: e
— Wednesday 13:00-15:00 (Thursday 15:00-17:00)
http://complexity.turing-machine.nl

Compulsory: hand in exercises every week on Monday
Final exam



Grade

e Hand in exercises on Monday the week
after they were distributed

e Final grade exercises is average of obtained
grades. We will drop the lowest grade

e Cooperation is allowed, always write down
solutions on your own

e Final grade = average of grade final exam
and grade exercises



P versus NP
problem



P versus NP

e One of the seven millennium prize problems

* “In the case of the P versus NP problem and the Navier-
Stokes problem, the SAB will consider the award of the

Millennium Prize for deciding the question in either
direction.”

e Pnotequal NP = 1 million$
e P equal NP = & million$



Main characters: Algorithms



Algorithm

e Algorithm is like a cooking recipe

THAT RECIPE BOOK'S BRILLIANT
-IT MAKES THE PERFECT
TABLE MAT




Algorithm

e Algorithm is like a cooking recipe

Recipe ¥
o EARE In edb:erts\
4 oz. chocolate 3eqys 0T
1 cup butter 1tsp vanlla 47
2 cups sugar 1 cup flour
Melt chocolate and butter. Stir sugar into nefted Spread
chocolate Stirin eggs andvanilla M inflour. inPan
Spread mix ingreased pan Bake at 350 for 40
rirutes or urtil inserted fork corres out alrmost ‘JJ
clean Cool in pan before eaing.
Prograrn Code Bake
g a 350
Declare variables
chocolde eggs i MNot Re
butter vanilla Ready é( oy
sugar flour
mix = meted (4*choca ae) + butter) Test
rix = &ir (rix + (2%sugan) wdth —
rix = &ir (trix + (3%203s) + vanilla) Fork

rix = rix + flour
spread (<)

While nat clean for)
bake (hrix, 350

Rermove
fromCven




Algorithm

algorithm is like a cooking recipe

input
computation
— steps (1 time unit)

output

Recipe T
co CAKE In edbi(erts
4 oz. chocolate 3egys T
1 cup butter 1tspovanlla 47
2 cups sugar 1 cup flour
Melt chocolate and butter. Stir sugar into rretted Spread
chocolate Stirin eggs andvanilla Mix inflour. inPan
Spread mix in greased pan Bake at 350 for 40
rAnutes or urtil inserted fork cores cut alrnost &
clean Cool in pan before eding.
Bake
Prograrn Code a 350
Declare variables
chocolde eggs X Mot Re
butter vanilla Ready 6 &
sugar flour
rmix = reted ((4*chocd ae) + butten) Test
rrix = &ir (rmix + (2¥sugan) Wdth —
rrix = &ir (hrix + (3Yeggs) + vanilld) Fork

rrix = rrix + flour
spread (i)

While nat clean fork)
bake (rrix, 350

Rerove
frorn Cwven




Example
Greatest Common Divisor (GCD)



step 1
step 2
step 3
step 4

step 7/

step 13

Slow Algorithm

a=21 b=13
=13 13421
i=12 12421
i=11  11+21
i=10 10121
i=7 7113
i=1

output 1

slow-gcd(a, b)
| = min(a,b)
while ifa or i1b
=10 -1
output |




Analysis of Algorithm

Analysis of alg. is preparation time of recipe

CARL SAGAN'’S APPLE PIE

1 universe

1 9" pie shell

6 cups sliced apples
3/4 cup sugar

1/2 cup brown sugar

Remember -
“If you want
to make an
apple pie
from scratch,
you must first
create the
universe.”
~Carl

2 tbsp all-purpose flour Preparation time:
1/2 tsp cinnamon 12-20 billion years
1/8 tsp nutmeg

1/2 cup all-purpose flour Servings:

3 tbsp butter 8

Preheat oven to 375 F. Make the universe as usual.

Place apples in a large bowl. In a smaller bowl, mix
together sugar, 2 tbsp flour, cinnamon, and nutmeg.
Sprinkle mixture over apples. Toss until evenly coated.
Spoon mixture into pie shell.

In a small bowl mix together 1/2 cup flour and brown
sugar. Add butter until mixture is crumbly. Sprinkle
mixture over apples. Cover loosely with aluminum foil.

Bake in preheated oven for 25 minutes. Remove foil and
bake another 30 minutes, or until golden brown.




step 1
step 2
step 3
step 4

step 7/

step 13

Slow Algorithm

a=21 b=13
1=13 13421
i=12 12 121
i=11 11421
i=10 10121
i=7 7113
i=1

output 1

slow-gcd(a, b)
| = min(a,b)
while ifa or i1b
:=1-1
output |

if gcd(a,b)=1 then
algorithm uses min(a,b) steps




Better Algorithm



step O
step 1
step 2
step 3
step 4
step 5
step 6

Euclidean Algorithm

Greatest Common Divisor (GCD)

a=21 b=13

a=13 b=21mod13=38
a=8 b=13mod8=5
a=5 b=8mod5=3
a=3 b=5mod3=2
a=2 b=3mod2=1

a=1 b=2mod1=0
output 1

function gcd(a, b)
while b # 0
t:=Db
b:=amodb
a. =t
output a




Analysis GCD-Algorithm

function gcd(a, b)
? b)
e worst case number of steps: while b £ 0
Theorem t=b
. . b:=amodb
alg. terminates in g =t
2log (m) +1 steps output a
m=max(a,b)
step0 a=21 b=13
stepl a=13 b=21mod13=8
Proof: step2 a=8 b=13mod8=5
every second step a is step3  a=> b=8mod>=3
I alved step4 a=3 b=5mod3=2
step6 a=1 b=2mod1=0



Complexity

e Euclid: 2log (m)+1 m =max(a,b)

e Slow: m m’= min(a,b)
e length of the input: log(a) + log(b) = n

Euclid: O(n) Slow: 20(n)

e Euclid exponentially faster than slow!

e Complexity of computational problem is
running time of the best algorithm



Computation & Complexity

e Computational problem:
— INPUT. computation  QUTPUT

— Example: a,b output gcd(a,b)

e Complexity:
— Number of computation steps needed for
“best” algorithm

— function of the input size



Complexity

e Determine the complexity of a
computational problem:

— Upper bound: construct algorithm

— Lower bound: any algorithm needs this many
steps ‘

e |deally upper bound = lower bound

functions of the input size



Complexity of gcd problem

Euclid’s algorithm runs in O(n) steps
Can we devise a faster algorithm?

Not really: any algorithm has to read the
whole input: requires n steps

— Upper Bound: O(n)

— Lower Bound: n

Complexity of gcd is linear.



Complexity Class P



Feasible Problems: P

e Feasible or efficient algorithms run in

polynomial time: n® (some c)
e Complexity Class P :

— All the problems that have feasible algorithms

e Example:

— Linear Programming
— Network Flow Problems
— Shortest Path

For these problems
upper bound is
“close” to lower
bound: at most

polynomial far off.




Another problem
Satisfiablity



variables
Clause
formula
exist
such that

Satisfiability
Cq1...0n Cl:(mi\/mjvm_k)



Example

F F T T T F FoT
(T VZ2) AN (21 VX3) A (z2VT3) A (TTV 23)

l l l l



Example

T F ¥ T T F T T
(TyVTo) N(x1 Va3z) A(xoVT2) A (TTV 23)




Satisfiability
variables %1---Zn

Clause Cl .Cm Cl — (33@ \V X \V :E_k)

formula ¢($1$n) :C]_/\/\Cm
exist & ...0n a; € {71, F}

such that p(x1=a1...an=apn) =T

SAT = {¢ | ¢ is satisfiable}

simple algorithm: try all 2" assignments



Unknown Complexity

It is hard to determine the complexity of

many problems
Example:

— Is this formula satisfiable? SAT

— Traveling Salesman Problem. TSP

Lower Bound: n
Upper Bound: 2"

\

Best Known!



Complexity Class NP



NP

e complexity class NP
— polynomial time to check solution

e xin L: exists ay: P(x,y) =1 (true)

polynomial time computable in length of x only

@ 1s satisfiable

SAT in NP

da: gp(a) =True




P & NP

e complexity class NP
— easy to check solution
— polynomial time check

— easy to check assignment is satisfiable
~cllIS

e complexity class P
— easy to find solution

— decide in polynomial time
— compute in polynomial time gcd(a,b)



PC NP [

SAT

strictly, gcd is a
function and not a

Many many more
problems fall into this

set. Will ignore this classification

distinction here

gcd Primality




Reductions & Completeness

reduction

A<TB

compute A in poly-time with B as free subroutine

“A is computationally not harder than B”

“if Bin P then Ain P”

Cis NP-compIete Theorem [Cook-Levin’71]
.Cc NP SAT, TSP, many others NP-complete

allA e NP: A<:C -SAT In P < P=NP




P versus NP



SAT

P= NP




SAT

NP




P versus NP Question

e P=NP?
e widely believed that P = NP

e how to show this is true?

— Prove better lower bounds for existing
problems like SAT

— Construct problem in NP with super

polynomial lower bound



Lower Bounds

e Construct D € NP
e no poly-time algorithm solves D

— for every poly time algorithm M exists a string
x such that:
e M(x)=1 & x ¢ D or
e M(x)=0& x €D

= DnotinP

D </ SAT = SAT not in P



Diagonalization



How big are the reals ?

e Cantor showed K not enumerable

e diagonalization
— given an enumeration of the reals

— construct real number d not in the
enumeration



uoleJawnua aWos Ul s|eal

Diagonalization
1 2 3 4 S 6 7 8 —

=093 07 07 2 5.
ith digit of d is ith entry of diagonal +1 mod 10



Diagonalizing out of P



swyiJog|e swn |eiwouAjod

W N

~

N

~

- - -

Diagonalization (2)

Xy X, X3 X4 X5 X4 X; Xg

X1 X, X3 X4 Xg Xg X7 Xg
€Ep D ¢D €D ¢D €D ¢D €D

x. in D if and only if M.(x,)=0

—




Diagonal Language

D = {z; | M;(x;) = 0}

ith poly-time algorithm/machine

D ZP, every poly-time machine errs on some input
DENP ?? probably not, but

D €time(n'een), quasi polynomial time

with more time can compute more



More Bad News

e Relativization (Oracles):
— Exists oracle A: P”=NP*
— (Exists oracle B: P®B = NP8)

Proof technique should not relativize

Diagonalization and

most other techniques

we know

relativize






Space Complexity

e Time of a computation not only resource
that matters

e Space or memory the computer uses
e |: logarithmic space usage
— models web applications

e PSPACE: polynomial space usage

— natural class with natural complete problems



Reuse Space

Space-s(n) computations may run for 25"
steps

— if it runs longer it is in a loop and will never
stop.

PSPACE contains P and NP.
L is contained in P
NL: non-deterministic LOGSPACE



Some Space Theorems

e NLInNP

e NL is closed under complementation

[Immerman—Szelepcsényi1’87]

e NLin DSPACE(log”2 n)
[Savitch’70]



SAT

Logarithmic
Space

PSPACE

Polynomial

Space

Nondeterministic
Logarithmic space

= co-NL




Open Questions

Besides P versus NP
L versus NL

_versus P

_ versus NP
P versus PSPACE

More refinements and open embarrassing
open problems




Try something easier

e Study weaker models of computation and
develop new lower bound techniques

— Circuits with small depth
— Monotone circuits

— Decision Trees

— Branching Programs

e The weaker the model the better the lower
bounds!



Simple model:
Circuits



Circuit Model of Computation

X in SAT ?

evaluate
Circuit

X1 X2 X,
0/1 0/1 0/1



Size of the Circuit

1. mostimportant: F(x)
number of gates

2. Depth of the circuit

Parallel time of computation | |



Constant Depth

depth is constant
size is polynomial

AC°

compute parity:
F(x) = X; + X5 + -+ + X, mod 2

Theorem
: : 1/d . : :
parity requires 2" / Size circuits

of depth d

Note: d = log n bound is meaningless




NP =AC!?

SAT
P is poly size
poly depth
AC! poly size
Parity ACO poly size log n depth

constant depth




natural proofs another hurdle?

e proof technique that shows parity not in
ACP likely won’t work to separate P from NP

e these proofs fit in a framework called
natural proofs

Theorem
if one-way functions exist then

natural proofs can’t separate P and NP




natural proofs another hurdle?

e proof technique that shows parity not in
ACP likely won’t work to separate P from NP

e these proofs fit in a framework called
natural proofs

Theorem
if one-way functions exist then

natural proofs can’t separate P and NP




Approaches

Structural approach using eg. autoreducibility
Combinatorial approach
Algebraic, degrees of multivariate polynomials

Geometric Complexity
— algebraic geometry
— representation theory

Communication complexity



P vs NP & Cryptography

computational hardness guarantees security of

cryptographic protocols

— factoring, discrete logarithm
— lattice problems

— learning problems
one-way functions

— compute f(x) quickly

— hard to invert

if P=NP then no cryptography

\

efficient on

quantum computer







Quantum Computing
&
Complexity Theory



Physics and Computing

Computing is physical
Miniaturization =2 quantum effects

=>» Quantum Computers

1) Enables continuing miniaturization

2) Fundamentally faster algorithms
3) New computing paradigm



Superposition

e object in more states at same time
e Schrodinger's cat: dead and alive

e Experimentally verified:
— small systems, e.g. photons

— larger systems, molecules




Quantum Mechanics

e Most complete description of Nature to date

e Superposition principle:

— “particle can be at two positions at the same time”

e |nterference:

— particle in superposition can interfere with itself

e Entanglement:

— Non-locality
— EPR paradox

A. Einstein B. Podolsky N. Rosen



Quantum Information Processing

e qubit, superposition of bits

, C
«l0) +811)  BEE o

* no cloning: qubit cannot be copied

e entanglement

1 1
@|00> T ﬁ|11> EPR-paradox
non-locality




Measurement & Evolution

a, 3 € C

e Measuring qubit: «|0) + 8|1) o2+ 152 = 1

e OQutcome: prob. distribution

— observe 0 with prob. |a|?
— observe 1 with prob. |5|?



Example

V)= 5[0+



Example

V)= 5[0+

Measuring \:  Prob [0] =1/2
Prob [1] =1/2



Example

V)= 5[0+

Measuring \:  Prob [0] =1/2
Prob [1] =1/2

After measurement:

with prob 1/2 ‘z/j> - ‘O>

with prob 1/2 ‘1/J> = ‘1>



Quantis — QUANTUM RANDOM NUMBER GENERATOR

Although random numbers are required in many applications, their
generation is often overlooked. Being deterministic, computers are not
capable of producing random numbers. A physical source of randomness is
necessary. Quantum physics being intrinsically random, it is natural to exploit
a quantum process for such a source. Quantum random number generators
have the advantage over conventional randomness sources of being
invulnerable to environmental perturbations and of allowing live status
verification.

Quantis is a physical random number generator exploiting an elementary
quantum optics process. Photons - light particles - are sent one by one onto
a semi-transparent mirror and detected. The exclusive events (reflection -
transmission) are associated to "0" - "1" bit values.

———o/1/1/0/o[1] | |




TOUR OF ACCOUNTING

OVER HERE

Wt HAVE OUR
RANDOM NUMBER
GENERATOR.

www.dilbert.com scottadams@acl.com
&

NINE NINE
NINE NINE
NINE NINE

|
_
ycff ¥ ——

10]asfo) ® 2001 United Feature Syndicate, Inc,

ﬁgs THAT'S THE
My PROBLEM
. WITH RAN-
THAT'S _
RANDOM?  DOMNESS:
YOU CAN

NEVER BE
SURE.

Copuright 2 2881 United Feature

Syndicate, Inc.



Measurement & Evolution

a, 3 € C

e Measuring qubit: «|0) + 8|1) o2+ 152 = 1

e OQutcome: prob. distribution

— observe 0 with prob. |a|?
— observe 1 with prob. |5|?

e Evolution of system (quantum program)
— Unitary operation

*
—-U-u =1 (U" : complex conjugate, transpose)



Major results of QIP

e Efficient quantum algorithm for factoring
— breaks public key cryptography (RSA) [shor'94]

e Fast quantum search algorithm [Groverss]
— quadratic speedup, widely applicable
e Quantum communication complexity

— exponential savings in communication

e Quantum Cryptography [Bennett-Brassard’84]

— Quantum key exchange



Quantum Polynomial Time

e New Complexity Class

e Problems that can be efficiently computed
on a quantum computer

BQP

e Where does BQP sit in the complexity
landscape?



BQP




BQP and Complexity

BQP contains P (and BPP)
BQP is in PSPACE
Is not believed to contain NP

— open: show this would imply unlikely classical
consequences.

Is not known to be in the Polynomial
Hierarchy (PH)

— open: oracle such that BQP not in PH









P=NP

P=NP, but the proof does not give us an
algorithm

P=NP, but algorithm for SAT runs in time
nlOOOOOO

P=NP, but algorithm for SAT runs in time
2100

P=NP, and algorithm for SAT runs in time n?



n? algorithm for SAT

e Wonderfull!!
— computing ground states of Hamiltonians
— protein folding problem solved
— artificial Intelligence takes really off
— optimal scheduling
— computational learning theory

— weather prediction improves



n? algorithm for SAT

e for mathematics

— can find proofs to theorems, provided they
have short proofs

— can simply ask computer whether theorem/
conjecture is true/false

— mathematics will change dramatically

— quickly solve the other 5 remaining Clay
problems



Summary

e P versus NP central, not just in mathematics and
computer science but also in physics, biology,
chemistry, cryptography etc.

e not clear how to attack it, several obstacles:
relativization, natural proofs, algebraization

e much simpler questions are still way out of reach



2)
3)
4)
5)
6)
7)
8)
9)

Schedule

P, NP, reductions, co-NP

Cook-Levin Thm:3-SAT is NP-complete, Decision vs Search
Diagonalization, time hierarchies

Relativization

Space complexity, PSPACE, L, NL

The polynomial hierarchy

Circuit complexity, the Karp-Lipton Theorem

Parity not on ACMO

10) Probabilistic algorithms
11) BPP, circuits and polynomial hierarchy

12) Interactive proofs, Graph-lsomorphism problem
13) IP = PSPACE
14) Derandomization
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Step 1: Post Elusive Proof. Step 2: Watch Fireworks.

By John Markoff
Published: August 16, 2010

The potential of Internet-based collaboration was vividly "“”“wm""“::
demonstrated this month when complexity theorists used blogs
and wikis to pounce on a claimed proof for one of the most
profound and difficult problems facing mathematicians and

computer scientists.

Monday, August 9th, 2010

Putting my money where my mouth isn’t

A few days ago, Vinay Deolalikar of HP Labs started
circulating a claimed proof of PANP. As anyone could
predict, the alleged proof has already been Slashdotted
(see also Lipton’s blog and Bacon’s blog), and my own
inbox has been filling up faster than the Gulf of

Mexico. Bloggers slopen droombewijs
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